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EXECUTIVE SUMMARY 
The primary goal of this effort is to bring to maturity a select set of basic 

algorithms, hardware, and approaches developed under the Integrated Sensing and 
Processing (ISP) Phase I program, implement them on representative hardware, and 
demonstrate their performance in a realistic field environment. We have identified a few 
promising research thrusts investigated in ISP Phase I where field demonstrations are cost 
prohibitive but collected data sets are available. Here, we will conduct a thorough 
performance evaluation.  
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0. Technical Abstract 

Advances in sensor technologies, computation devices, and algorithms have 
created enormous opportunities for significant performance improvements on the modern 
battlefield. Unfortunately, as information requirements grow, conventional network 
processing techniques require ever-increasing bandwidth between sensors and processors, 
as well as potentially exponentially complex methods for extracting information from the 
data. To raise the quality of data and classification results, minimize computation, power 
consumption, and cost, future systems will require that the sensing and computation be 
jointly engineered. ISP is a philosophy/methodology that eliminates the traditional 
separation between physical and algorithmic design. By leveraging our experience with 
numerous sensing modalities, processing techniques, and data reduction networks, we 
will develop ISP into an extensible and widely applicable paradigm. The improvements 
we intend to demonstrate here are applicable in a general sense; however, this program 
will focus on distributed sensor networks and missile seeker systems. 

1.0. Management Overview and Summary 
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1. A. Program Summary 
The Raytheon Company, Missile Systems (Raytheon) ISP Phase II program is a 

twenty-four month contract with a Period of Performance (PoP) covering 1 March 2005 
to 28 February 2007. Raytheon has four universities and one small business as ISP Phase 
II subcontractors: Arizona State University (ASU); Fast Mathematical Algorithms and 
Hardware (FMAH); Georgia Institute of Technology (Georgia Tech); Melbourne 
University (UniMelb) and the University of Michigan (UM). 

1. B. Program Status 
The Raytheon ISP Phase II Program status can be summarized as remaining “on 

track.” All of the negotiations have been completed and all of the subcontractors are now 
under subcontract. We had incurred some schedule slips on both the distributed tracking 
and the Cooperative Analog Digital Signal Processing (CADSP) demonstrations during 
the previous PoPs. An updated schedule for the distributed tracking demonstration was 
developed during the previous PoP and is again included in Section 2.0. While the 
revised schedule still supports a demonstration before 28 February, there is little room for 
further slippage. The current status of the CADSP imager hardware is discussed in 
Section 2.A.6. Progress in the current PoP has been such that we are pretty much on 
schedule for both the distributed tracking and CADSP demonstrations 

The Program is still running below the spending plan; however, we expect to 
complete the contract on time and budget. As of 28 April 2006, 38% of contract funds 
had been expended with ~51% of the program complete. In part, the contract expenditure 
reflects an under-run due to delays in receiving invoices from our subcontractors. We are 
still working this issue. Raytheon has improved its spending profile significantly. While 
we are still under-run on an inception-to-date basis (41% of funds expended), our staffing 
level of ~3.5 heads has us completing the contract just slightly under budget. Initially the 
reduced Raytheon spending was designed to better align with the subcontractor 
schedules; however, we have also encountered some difficulties with personnel 
availability. The problem of Raytheon personnel availability remains a concern, but it has 
largely been resolved.  

One area of significant concern is the availability of a suitable radar test and 
integration engineer. We continue to work this issue, but feel that we have an 
acceptable solution. A junior test engineer has been assigned to support our program, 
and we have gotten a commitment from a senior radar analyst for consulting. This 
problem remains one of the higher risks for our program. 

1. C. Personnel Associated/Supported 
Raytheon 
Dr. Harry A. Schmitt    Principal Investigator 
Mr. Donald E. Waagen   Co-Principal Investigator 
Dr. Sal Bellofiore    Distributed Sensing Lead 
Mr. Thomas Stevens    Distributed Sensing Support 
Dr. Robert Cramer    Mathematical Support 
Mr. Craig Savage    Waveform Design and Control Lead  
Dr. Nitesh Shah    High Dimensional Processing Data Lead 
Mr. William Daniels    Radar Test and Integration Support 
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FMAH 
Professor Paolo Barbano 
Professor Ronald Coifman 
Dr. Nicholas Coult 

ASU 
Professor Darryl Morrell 
Professor Antonia Papandreou-Suppappola  

Georgia Tech 
Professor David Anderson  
Professor Paul Hasler 

UniMelb 
Dr. Barbara LaScala 
Professor William Moran 
Dr. Darko Musicki 
Dr. Sofia Suvorova 

UM 
Professor Al Hero 
Dr. Neal Patwari 

Significant Personnel Actions: There was one significant personnel change during the 
current PoP. Mr. William Daniels was added for radar test and integration support. 

1. D. Recent Accomplishments and Events 
An amended Technical Assistance Agreement (TAA) was approved by the U.S. 

State Department on 6 October 2005. The amended TAA expands the technical scope to 
cover the research areas added under the ISP Phase II program, adds two dual citizens at 
UniMelb, and also covers Raytheon, Australia. The amended TAA has been signed by all 
the parties and is in force. 

In support of the mathematical and information theoretic processing evaluations, 
Nick Coult (FMAH) spent a week at Raytheon in 10-14 April 2006 to evaluate the 
performance of FMAH’s diffusion map signal processing approach on an set of Uncooled 
Infrared Imaging (UCIR) imagery collect under a Raytheon IRAD in support of an Air 
Force program. This data is ITAR restricted, company proprietary and considered 
sensitive by the Air Force Customer. Results of this preliminary evaluation can be 
provided separately as an appropriately marked addendum.   

Other Accomplishments and Events: 
 Received MATLAB code for two 1-Bit trackers from UniMelb on 21 April 2006. 

 Raytheon personnel (Waagen, Stevens and Schmitt) visited Georgia Tech 3-5 
April 2006 to discuss current CADSP hardware and algorithm status. 

 Raytheon personnel (Waagen and Schmitt) and Georgia Tech personnel 
(Anderson) visited the group Dr. T.J. Klausutis (AFRL, Eglin) for a TIM on the 



ISP Phase II (Contract N00014-04-C-0437) 
Quarterly Progress Report (CDRL A001 No. 5) 

 

 6

CADSP capabilities and to discuss possible AFRL laboratory interest in using the 
CADSP imager in their Optical Flow test program. 

 Presented “Cooperative Control of Multiple UAVs for Passive Geolocation,” at 
the Special Session on Cooperative Dynamic Systems, 2006 IEEE International 
Conference on Networking, Sensing and Control, Ft. Lauderdale, FL. 

 Attended the DARPA Waveforms for Active Sensing (WAS) Program Review 
Meeting 14-15 March 2006. 

 Held a TIM on 15-17 March 2006 at ASU to discuss progress on their 1-bit 
detector for the distributed tracking demonstrations. 

 Raytheon personnel (Waagen and Schmitt) visited UniMelb 15-23 April 2006 to 
discuss technical progress on ISP II. 

1. E. Near Term Events 
 Present “Comparison of Inter-class Divergence for Linear and Nonlinear 

Dimensionality Reduction, with and without Class Labels” and “Correlation of 
Inter-class Divergence and Classification Performance,” at the Combat 
Identification Systems Conference (19-22 June 2006, Orlando, Florida). 

 Obtain permission from the Air Force Program Office to release UCIR imagery to 
FMAH personnel. FMAH has the capability to process the UCIR imagery in an 
ITAR controlled environment and has a current Non-disclosure Agreement 
(NDA) with Raytheon Missile Systems. 

 Release MATLAB simulation code used for the analysis in the “Cooperative 
Control of Multiple UAVs for Passive Geolocation,” paper to Professor Daniel 
Pack, United States Air Force Academy. This code is understood to be at a 
research-level and used for that purpose. 

2. A. Technical Progress  
2.A.1. Raytheon Technical Progress 
2.A.1.a. Distributed Sensor Demonstration 

Wireless low-power sensor networks have gained much deserved attention in 
many research fields. With the advent of low-cost digital signal processors, wireless 
sensor networks have begun to emerge in many applications. The majority of military 
applications, including our particular choice of tracking of personnel though a field of 
distributed sensors, possess a common core of signal processing functions. Because such 
sensor networks will be laid down in an ad hoc configuration consisting of thousands of 
sensor nodes, accurate and scalable algorithms are critical. The algorithms and 
approaches that we are developing under ISP Phase II are thus expected to have wide 
applicability. For example, we are working closely with the Raytheon group that is 
demonstrating shooter localization under DARPA Information Exploitation Office (IXO) 
Networked Embedded System Technology (NEST) program. Self-localization is a 
significant computation challenge for NEST and an opportunity for technology transfer. . 

For completeness, we again include a high level overview of the distributed 
tracking demonstrations. Detailed technical discussions and progress will be provided in 
several subsections that follow. 
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Distributed Tracking Demonstration Preliminaries 
We divide the demonstration into a series of tasks that are critical for the 

demonstration and a set of tasks that would provide additional capability but are not 
critical to the accomplishing the demonstration. We refer to these latter tasks as “Extras.” 
As illustrated in Figure 1, the distributed tracking demonstration consists of three 
functional blocks: (i) self-localization of the motes; (ii) 1-Bit on-mote detector; and (iii) 
base station tracker. 
 Detector 

on Motes 
(MICA2) 

Self-Localization Tracker 
on Base Station 

 
Figure 1: Demonstration Block Diagram 

These three functional blocks are discussed in more detail below and flow into a 
schedule as shown in Table 1. The schedule shown in Table was presented at the last 
Quarterly Report, and it is updated to show the progress of each task.  This schedule is 
divided into a series of tasks that are critical for the demonstration (depicted with an 
“M”) and a set of tasks that would provide additional capability but are not critical to 
accomplishing the demonstration (depicted with a “B”).  None of the non-critical tasks 
have been started as of today.  However, almost all the critical tasks are either complete 
(depicted with a “C”) or in progress (depicted with a “P”). 

Table 1: Distributed Tracking Schedule and Progress Summary 
Task # Task Description System Component Performer From To Duration (week) Bonus/Mandatory Progress

1 Interface Specification Document (Matlab/nesC) ISD All 2/20/2006 3/3/2006 1.57 M P
Motes Self-Localization (Acoustic Ranging) Localization Thom/Sal ------ 5/31/2006 2 B
Motes Self-Localization (RIPS) Localization Bob/Sal ------ 5/31/2006 2 B
Motes Self-Localization Data Collection Improvement (RIPS) Localization Craig/UniMelb ------ 5/31/2006 4 B
Motes Self-Localization GA Replacement (RIPS) Localization Bob/Michigan ------ 5/31/2006 4 B
Motes Self-Localization Implementation/Evaluation (RSSI) Localization Bob/Michigan ------ 5/31/2006 2 B

2 Sensor Characterization (Microphone) Acoustic Model/ROC's Detector Sal/ASU 2/13/2006 2/27/2006 2 M C
Sensor Characterization (Accelerometer) Vibration Model/ROC's Detector Sal/Thom ------ 4/17/2006 2 B
Sensor Characterization (Magnetometer) Magnetic Model/ROC's Detector Sal/Thom ------ 4/17/2006 2 B

3 Filter Acoustic Footstep (Microphone) Detector Sal/ASU 2/27/2006 3/20/2006 3 M C
Filter Vibration Footstep (Accelerometer) Detector Sal/Thom ------ 4/17/2006 2 B
Filter Magnetic Noise (Magnetometer) Detector Sal/Thom ------ 4/17/2006 2 B

4 Energy Computation (Microphone) Detector Sal/ASU 3/20/2006 3/27/2006 1 M C
Energy Computation (Accelerometer) Detector Sal/Thom ------ 4/17/2006 1 B
Energy Computation (Magnetometer) Detector Sal/Thom ------ 4/17/2006 1 B

5 Threshold (Microphone) Detector Sal/ASU 3/27/2006 4/3/2006 1 M C
Threshold (Accelerometer) Detector Sal/Thom ------ 4/17/2006 1 B
Threshold (Magnetometer) Detector Sal/Thom ------ 4/17/2006 1 B

6 Transmit 1-bit Detection Detector Sal/ASU 4/3/2006 4/17/2006 2 M C
7 Tracker Single Target (Particle Filter) Tracker Sal/Thom/ASU 4/17/2006 5/31/2006 6.28 M P

Tracker Unknown Number of Targets (Particle Filter) Tracker Sal/ASU 2/1/2006 5/31/2006 17 B
8 Tracker (UniMelb) Tracker Craig/UniMelb 4/20/2006 5/31/2006 5.85 M P
9 Detector/Tracker Integration Integration All 5/31/2006 6/30/2006 4.28 M P

10 Motes Localization (Survey) Localization Bob/Thom/Sal 11/27/2006 12/1/2006 0.57 M
11 Full Dress Rehersal Test Testing Bob/Thom/Sal 12/4/2006 12/15/2006 1.57 M

M -- Mandatory to guarantee success of the demo
B -- Bonus/Extra accomplishment (integrated in the demo if completed in time)
C -- Task Complete
P -- Task in-Progress  

 
Self-Localization: 

•  Survey – If available self-localization algorithms do not produce accurate enough 
results, we should just localize motes by survey them.  
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•  [Extra] Acoustic Ranging – VU algorithm currently gives reasonable results for 
inter-mote distance of 9 ft. For inter-mote distance higher than 9 ft, parameters 
need to be tweaked to reduce error in measured ranges.  

•  RIPS – The code needs to be installed onto MICA2’s. We may require permission 
to obtain UNCLASSIFIED code since it was developed under NEST program. 
Once installed, we need to make measurements behind M09 and evaluate results 
accuracy. Accuracy should be better than Acoustic Ranging Algorithm. 
o Drawbacks 

 [Extra] Current scheduling during data collection is too exhaustive and 
time consuming to make this a practical algorithm. For example, for only 
16-mote network, data collection takes anywhere from 30 to 40 minutes. 
UniMelb wants to take this problem to improve scheduling by making only 
necessary measurements. 

 [Extra] Once measured data is collected, motes are localized using a 
Genetic Algorithm (GA). GA’s are known to be computationally intensive 
(thus, slow to converge to a solution), and they do not always converge. 
UM will investigate replacing the GA with a more reliable and faster 
algorithm such as the steepest descent. 

•  [Extra] RSSI – Determine the accuracy of this Received Signal Strength (RSS) 
algorithm from UM. Also, make sure UM can implement it on MICA2’s.    

Detector (1-bit): 
We next briefly discuss our detector development. The baseline demonstration will use a 
1-Bit detector (target detected or not). This choice of detector implementation is driven 
by the network being so constrained in its communication capability. As shown in Figure 
2, the detector is composed of four functional blocks: (i) Sensor Characterization; (ii) 
Signal Filtering; (iii) Energy Computation; and (iv) Threshold Calculation. For our 
scenario or tracking people through the network, sensor characterization consists of 
developing the acoustic signature of footsteps. Filtering is next performed to improve the 
Signal to Noise Ratio. A threshold is then set to produce the 1-Bit output of target 
detected or not. These four functional blocks are discussed in more detail below and 
again flow into a schedule as shown below. 
 

Sensor(s) 
Characterization 

Filter Energy 
Computation

Threshold 

 
Figure 2: Detector Block Diagram 

•  Sensor(s) Characterization 
o Microphone (acoustic) 

 Person Walking – Determine ROC’s to determine detector parameters, and 
motes network topology. 

o Accelerometer 
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 [Extra] Person Walking – Determine if the sensor is capable of sensing 
vibration above noise floor on outdoor ground. If so, determine ROC’s to 
determine detector parameters, and motes network topology.    

o Magnetometer 
 [Extra] Person Walking with Metal/Cell Phone – Determine if sensor can 

sense Metal or Cell Phones magnetic field. If so, determine ROC’s to 
determine detector parameters, and motes network topology.   

•  Filter 
o Microphone (acoustic) 

 Person Walking – Develop Digital Filter similar to VU Acoustic Ranging 
Algorithm. The filter needs to be a Low-Pass. ASU will determine the 
frequency range of the filter. 

o Accelerometer 
 [Extra] Filtering can be ignored since vibrations are assumed to come only 

from people walking for the demo. 
o Magnetometer 

 [Extra] Filtering can be ignored unless interference from Earth Magnetic 
Field or Magnetic Noise in the area affect detector.     

•  Energy Computation 
o It can be extracted or be similar to VU Acoustic Ranging Code 

•  Threshold 
o Determine threshold based on ROC’s. 

•  Transmit Detection. 
o 1 – Target Detected 
o 0 – Target Not Detected 

Tracker: 
•  Received Data – Receive detected/not detected data from each mote. 
•  Track – Track target using: 

o Particle Filter 
o Australian Tracker 

Software: 
•  Matlab – Use Matlab to integrate Demo components and display tracker’s 

graphics/results. 
•  NESC – Use to implement Localization and Detector algorithms on MICA2’s. 

Interface Specification Document: 
We have developed that first version of an Interface Specification Document 

describing the signals, variables, etc., needed at the interface of each component of 
Figure 1. Input was received from ASU, UM and UniMelb. This document describes, for 
example, the data and signals that detector needs to provide to the tracker.  
Summary: 
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Figure 3 represents the final demonstration. It will have 40 to 100 sensors (S1, …, 
Sn) detecting a target and possibly multiple targets. There will be one or more Base 
Stations depending on the number of available trackers. The Base Stations (trackers) will 
graphically show the target location using Matlab interface 
 

S1 

S3 

S2 

S4 

Sn-1 

Sn 

S5 

… 

Tracker 1

Tracker 2
[Extra]  

 
Figure 3: Demonstration Representation 

Test Bed for the Distributed Tracking Demonstration 
We have completed a test bed for the distributed tracking demonstration. This test 

bed gives the capability to easily integrate and test a variety of wireless sensor detectors 
and trackers. The main components of this test bed are shown on Figure 4, and they are 
the Detectors on the Wireless Sensors (Motes), the Base Station, and the Processing 
Station (Laptop). 
 

Processing Station (Laptop) Mote 1 
(Detector) 

Mote 2 
(Detector) 

Mote N 
(Detector) 

Base 
Station 
Mote 

RS-232

Matlab 

Buffer Tracker 

Display 
Real Time 

Results 

Gateway 

 
Figure 4: Test Bed Block Diagram for the Distributed Tracking Demonstration 

The detectors on the motes can be any detector that can be implemented on the 
TinyOS and that can work with the limited hardware resources. The base station is a mote 
that receives the messages from the remote motes and transfers them to the serial buss 
RS-232 for input to the Processing Station (Laptop). The Processing Station consists of a 
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Gateway, and MATLAB components. The Gateway is a PC component that interprets the 
TinyOS message for MATLAB. The data, such as the Mote ID number that has detected 
a target, from the Gateway gets stored in a Buffer, which is then used by the Tracker 
algorithm. Finally, the target tracking results are displayed real time. 

On 4 May 2006, the test bed was tested in the parking lot behind building M09 at 
Tucson. Thirteen motes (detectors) were placed on styrofoam cups in a rectangular grid 
with interspacing of nine meters in one direction and four meters in the other direction. 
These detectors were programmed to detect a beeping sound of approximately 4.4 KHz. 
A Lego robot representing a beeping target was programmed to cross the mote field. A 
photo of the test bed setup is shown on Figure 5.  

 
Figure 5: Tracker Test Bed: Motes, Base Station Computer, and Lego Robot 

 
Figure 6: Base Station Computer displaying real time tracking results 
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While the motes are detecting the target, the real time results are being graphically shown 
on Figure 6 by MATLAB. Although the results shown on Figure 6 are inaccurate in that 
the target was not tracked accurately, the test bed itself worked well. Thus, to improve 
these results, the tracker and the detector parameters need to be adjusted. 
2.A.1.b Coordinated UAV Geolocation of a Stationary Emitter 

The geolocation problem is, simply stated, to discover the unknown location of a 
RF emitter. For purposes of this paper, simulated measurements used for estimation of 
the coordinates of the emitter consisted of time-differences-of-arrival (TDOA) of a signal 
at a number of different sensors. The sensors are assumed to be mounted on unmanned 
aerial vehicles (UAVs). The solution method described in our paper has two novel 
features. 

It is well-known [Foy 1976] that positioning of the sensors has an effect on the 
solution, with accuracy of the solution being increased or diminished, respectively, by 
well or poorly placed sensors. Obviously, in the geolocation scenario, it is not known 
where to place the sensors because the location of the emitter is not known. All is not 
lost, however, as the first novel aspect of our approach is to move the UAVs after taking 
each measurement so as to be better placed when the next measurement is taken. The 
covariance of TDOA measurements is defined as 1)( −AAT , where 
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with ),( kk yx  being the position of the thk sensor, and kR  the (estimated) range from this 
sensor to the (estimated) position of the emitter at ),( EE yx . (This is the matrix with three 
sensors; the matrix has 1−N  rows if the number of sensors is N .)  The magnitude of the 
covariance in each direction depends, in part, on the positions of the sensors. Thus, each 
UAV can be directed to move to the position that will minimize the trace of the 
covariance, constrained by how far the UAV can move during the allotted time interval. 

There is thus a sort of “positive exchange” between sensors and processing, 
wherein the sensors take a measurement, process it, then move in the direction which the 
processor has indicated would be most optimal for taking the next measurement. Our 
simulations show that, as time progresses, the UAVs find themselves increasingly better 
positioned with respect to the emitter. 

The second novel feature of our approach is use of the so-called “unscented” 
Kalman filter (UKF) for updating the emitter position estimate. The UKF has been 
around since about 1997 [Julier 1997] but, to our knowledge, has not previously been 
combined with TDOA for geolocation. Let us give a brief tutorial and show how the UKF 
is used in our application. 

Kalman filtering works with two equations, a state evolution or “process” equation  

(1)                                                kkk vf += − )( 1xx , 

where kx represents the estimate of the state at the thk step, and a measurement equation,  
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(2)                                                kkk wg += − )( 1xz , 
which returns the thk  measurement, kz , that should be observed given the state. In 
equations (1) and (2), { }kv  and { }kw  are zero-mean, Gaussian noise sequences. If the 
functions f  and g  in these equations are linear (i.e., matrix multiplication) then we use 
the by-now standard Kalman filter algorithm. If these functions are not linear we must 
resort to other means. The “other means” in this case is the following. 

For the geolocation problem with a stationary emitter, the state is constant, thus 
the function f  in equation (1) is merely the identity (we also ignore the noise term here). 
Following customary notation in Kalman filtering, let 1/1 −− kkx  denote the state estimate at 
step 1−k  of the algorithm, and let 1/ −kkx  denote prediction of the state estimate at step 
k , based on the process equation (1). Then, in our application, we replace (1) with the 
following very simple process equation, 

(3)                                                 1/11/ −−− = kkkk xx . 

We next turn our attention to the measurement equation. Function g  here is nonlinear, 
and what is done in the UKF is to generate a set of test points, the mean of these points 
being mean equal to 1/1 −− kkx , and their covariance equal to the current estimated 
covariance, which we denote by 1/1 −− kkP . The predicted measurement in (2) is then taken 
to be the mean, 
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kk −x  for mi ,,2,1 K= denote the test points, and { }iw  are weights. In our 

application,  the measurement function is 
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(assuming three ships), where c  denotes speed of propagation of the signal, and jp  
denotes the position of the j th ship. Thus, function g  predicts TDOA measurements. 

The Kalman gain matrix is computed as follows, 
1−= QSK  

where 

[ ][ ]∑
=

−−−− −−=
m

i

T
kk

i
kkkk

i
kkiw

1
1/

)(
1/1/

)(
1/ zzxxQ  

and 

[ ][ ] RzzzzS +−−=∑
=

−−−−

m

i

T
kk

i
kkkk

i
kkiw

1
1/

)(
1/1/

)(
1/ , 

where R  is the measurement noise covariance. (An estimate of this covariance must be 
supplied to the filter.)  The update, or correction, is now made, which is given by 
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(5)                                          
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In the first of equations (5), kk /z  denotes the actual TDOA measurement made at step k  
of the procedure. In the second of equations (5), 1/ −kkP  denotes the predicted covariance 
which, because of our assumption of a stationary state, is simply equal to the covariance 
at the 1−k  step, that is 

1/11/ −−− = kkkk PP , 

which is analogous to equation (3). We note that, in our application, the only place that a 
nonlinear equation is invoked is in equation (4). 

In spite of its simplicity, the UKF performs rather well, at least in our simulations. 
We have compared it with a sequential batch least-squares method, and found that the 
UKF is far more robust to measurement noise than is the batch processing. See Figure 7. 
This seems to be due to the fact that the UKF, like any Kalman-type filter, has the ability 
to automatically “de-emphasis” measurements which are excessively degraded by noise, 
at least once it has progressed far enough to have sufficient history at its disposal, since it 
is then able to recognize a measurement which is too far from the mean. The least-
squares method, on the other hand, has no automatic facility for doing this, and suffers. 
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Figure 7: The figure shows convergence of the location estimate for sixty time-steps 

In Figure 7, results of ten runs are superimposed. The top images are x- and y-
coordinates of the estimate computed by the unscented Kalman filter algorithm, while the 
bottom two images are x- and y-coordinates of the estimate computed by the sequential 
batch processing, which uses a Levenberg-Marquardt least-squares solver. The true target 
position is at (0, 0). Simulated random noise of 50 ns standard deviation, normally 
distributed, was added to the TDOA measurements, which translates to an uncertainty of 
15m on the ground. It can be seen that the batch processing estimate oscillates strongly 
within the noise bounds of ±15 m. In sharp contrast, the UKF estimate always coverges 
smoothly to the correct result, probably because the noise is Gaussian and Kalman filters 
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handle this case well. Nevertheless the UKF delivers superior results compared with a 
more straight-forward least-squares approach for this scenario. 

In summary, this method for geolocation of a stationary emitter is working rather 
well in our simulation code. However, the method has only been tested with simulated 
data, and will require testing with measured data before we can make definite 
conclusions. We are working closely with another Raytheon team that is under contract 
with the Advanced Tactical Targeting Technology (AT3) program. This team has 
measured data available, as geolocation is an important part of the AT3 program, and 
eventually we will give them our code or they will give us their data for further testing. 
Eventually we hope that someone, either Raytheon or perhaps the Air Force Academy, 
will put this code on a vehicle and test it in the field. In the meantime, we are working to 
extend our methodology to include moving targets, a problem which is of interest to both 
the AT3 program and the Air Force Academy efforts. 

2.A.1.c Evaluation of High Dimensional Data Processing Approaches 
Modern high-performance, agile sensors are capable of producing tremendous 

amounts of data. Examples include polarization- and/or waveform-agile high resolution 
synthetic aperture radar (SAR) systems, multispectral systems, etc. Each temporal 
snapshot can be regarded as a high-dimensional vector. For statistical stability and 
processing throughput considerations in time-critical applications such as automatic 
target recognition, classification and identification (ATR), it is common practice to 
project the input high-dimensional data into an informative low-dimensional subspace, 
either by forming domain-expert-defined features or by applying data-driven 
dimensionality reduction algorithms.  

In the case of data-driven dimensionality reduction, linear or nonlinear 
approaches can be selected to maximize either representation/parameterization efficacy 
or separability of class means. Examples include Principal Component Analysis (PCA) – 
linear/representation, Fisher Linear Discriminant Analysis (FLDA) – linear/separation, 
Laplacian Eigenmaps (LE) – nonlinear/locality preserving parameterization, and an 
extension to LE known as Class Constrained Dimensionality Reduction (CCDR) – 
nonlinear/locality preserving parameterization + separation. 

In the ATR setting, classifier performance is commonly used as one of the metrics 
for optimizing sensor parameter settings, and as the main metric for optimizing feature 
selection. This process entails training and testing different classifiers, each having some 
set of tunable parameters, leading to a search space that is both computationally 
prohibitive as well as potentially obfuscatory of the inherent interclass separability. As an 
alternative to evaluating classifier performance, we apply a nonparametric divergence 
estimator (Henze-Penrose Divergence) for measuring relative interclass separability. We 
have performed two investigations in this regard. In both cases, the data is a subset of the 
well-known, multi-class MSTAR X-Band SAR dataset.  

First, in a train/test setting, we evaluate the relative performance of PCA, FLDA, 
LE and CCDR applied to twelve targets. For the figure-of-merit, we use the mean of the 
pairwise interclass Henze-Penrose divergences of the test samples in the low-dimensional 
subspace (analogous to ranking classifier performance using ‘percent correct 
classification’). As features, we use the first ten subspace coordinates in each method. 
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Second, for a two-target case, we measure relative separability of subspace 
projections of the training data as well as the corresponding subspace projections of the 
testing data. We also apply three classifiers (support vector machine with optimized 
hyperparameter, k-nearest neighbor, linear) to the corresponding test subspace 
projections. We compare classifier performance with interclass train subspace divergence 
estimates, and we compare interclass train subspace divergence estimates with the 
corresponding interclass test subspace divergence estimates. This quantifies the 
predictive power of measuring interclass divergence in train data. As feature sets, we use 
all 1024 combinatorial subsets of the first ten subspace coordinates produced by PCA or 
LE. 

The underlying data and derived results are ITAR-restricted. Therefore they will 
not be discussed here. The results will be made available to the DARPA Program 
Manager and ONR COTR at the next program review (June 13-14, Litchfield Park, AZ). 
The two investigations will also be reported as follows at the 2006 Combat Identification 
Systems Conference (June 19-22, Orlando, FL) in a U.S. – only setting.  

2.A.1.d. CADSP UCIR Evaluation Technical Support 
There is currently a great deal of interest in UCIR sensors for Automatic Target 

Acquisition (ATA) on smart munitions, such as the NetFires NLOS PAM. The Georgia 
Tech CADSP imager has the potential for being incorporated into on-Focal Plane Array 
(FPA) pre-processing operations; these include: Non-Uniformity Compensation (NUC) 
and non-linear/non-local pixel equalization. Traditional equalization approaches (e.g., 
histogram equalization) tend to perform very poorly and it is likely that a localized, non-
linear equalization approach is needed. Given ISP Phase II funding constraints, we will 
limit these pre-processing investigations to an evaluation of their implementation on the 
Georgia Tech CADSP imager. We have also been in preliminary discussions with Eglin, 
Air Force Base about using their optical flow test facilities and have already made a site 
visit to discuss this option.  

2.A.2. ASU Technical Progress 
2.A.2.a. Tracking Algorithms for the CADSP Configurable Imager 

Our efforts during this reporting period have been primarily directed at extending 
our previous work to develop a multiple target tracker that will track targets in a scene as 
they enter, traverse, and then leave the surveillance region. The tracking is performed 
based on data received from the CADSP chip, which is configured according to the 
instructions of the tracker.  

Our multi-target tracking algorithm is composed of two main parts: the CADSP 
chip controls and the target tracker. The CADSP controls  determine the type of filtering 
operation that is performed on an 8x8 pixel block on a current frame of the tracking video 
sequence by the CADSP imager as it acquires the video. Moreover, it requests  only the 
blocks in a frame that are relevant to the currently tracked targets and detection of new 
targets. The tracker  incorporates the  video blocks provided by the CADSP as 
measurements into the particle filter. 

Currently we are working with real data  acquired by a web-camera and processed 
to simulate the CADSP chip. Considering the controls part, we have  developed an 
algorithm to select the blocks to be processed by the simulated CADSP chip that chooses 
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the minimum set of blocks necessary to assess the validity of each hypothesis made by 
the particle filter. This reduces the required information and computational expense 
dramatically compared to operating on the entire frame at each time step.  Moreover, the 
selection of filtering operation (Gaussian or Mexican hat filter) is now indicated by a 
model designed to track human figures. The tracking algorithm is adaptive to the scene at 
hand by collecting training data that are used to construct foreground (targets present in 
the scene) and background (targets absent from the scene) distributions. These 
distributions are used as prior information throughout the tracking process. The tracking 
algorithm has been designed to deal with the occlusion of targets and implement 
constraints that do not allow the simultaneous tracking of a single target by more than 
one partition.  

Figure 8 shows a sample frame of the video sequence used for tracking. It also 
indicates the model used for tracking human figures (white points). Each of these points 
represents an 8x8 pixel block. The block filtering operation to be performed is decided by 
the position of the point on the model. Presently, we are completing the multiple tracking 
code for tracking a known number of targets and exploring track-before-detect schemes 
for tracking newly arrived and leaving targets. 
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Figure 8: Video sequence used for tracking 

2.A.2.b. Mote Tracking Support: Detector Development 
Our efforts during this PoP were primarily directed at developing reliable and 

efficient methods of collecting acoustic data with the motes. After investigating several 
possible solutions, including several attempted modifications to the mote hardware, we 
have developed a viable solution by bypassing the motes’ radio communication circuitry 
and transmitting data via wire using the motes’ RS-232 interface. Using this solution, we 
have collected and analyzed a preliminary set of acoustic data, and analyzed the 
performance of the energy detector for it. The data was collected with a person walking 
on brick wearing tennis shoes, which made a fairly loud sound to provide one good 
benchmark case that could be used to compare to other surfaces. 

The data was collected continuously for one-two minute intervals at various 
distances. The footsteps were recorded using one of the motes with the same ideal 
acquisition circuitry that will be used in the final implementation, and its data was 
transmitted directly to the base station computer over an RS-232 cable and saved for later 
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analysis. The sampling frequency was approximately 3.1 kHz, at 8 bits. This sampling 
frequency was chosen based on analysis of high-quality recordings done previously using 
a computer. Representative graphs showing data collected at eight feet are shown in 
Figures 9 and 10. 

 
Figure 9: Time domain plot of acoustic data collected at 8 ft 

 
Figure 10: Time (a) and frequency (b) domain plots of one footstep at 8 ft. 

After collecting the data, the probabilities of detection and false alarm were computed 
by simulating the energy detector with MATLAB. The energy detector computes the 
energy in a time window whose length was chosen to be about .1s; this was determined to 
be the typical duration of a footstep. The energy is given by xk −µ 2

k= t−n

t

∑ , where kx is the 

data at time k , µ is the mean of the data, n is the window size, and t  is the starting time 
sample of the window. The detector bases its binary decision on whether this value is 
above or below some pre-set threshold. It then reports back to the fusion center, retrieves 
one new sample, and calculates the energy of the new window. This process is shown in 
Figure 11.  
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Figure 11: Energy calculations of two time windows at t=30.8s and t=30.81s 

The threshold of the energy detector was then varied. Detector decisions that a 
footstep was present are counted as either a correct detection or a false alarm. In order to 
differentiate the two, a separate high-quality recording of the target was recorded at 1 ft 
from the target. This recording was synchronized to the data collected from the mote. 
Because the second recording had a very good SNR, an energy detector could be used to 
obtain a near perfect detection and false alarm rate. The points at which a footstep was 
detected were noted, and then compared to the points at which the mote’s energy detector 
declared a detection. A slight time misalignment error was also allowed; if a detection 
was declared within a certain time error, it could still count as a correct detection. Once 
the number of samples between the stop and start points is known from the alignment, the 
mote data is upsampled by the ratio of voice recorder samples to mote samples within 
that time period. Figures 12 and 13 show the beginning and endings of the recordings 
(after being manually aligned as well as possible). Figure 14 shows a couple seconds of 
the data towards the middle of the recording where the alignment should be worst. The 
probability calculation process is shown in Figure 15 for a simulation with data from 2 ft 
and a threshold of 25,100. This resulted in a probability of detection of 0.707 and a 
probability of false alarm of 0.278. 

 
Figure 12: Alignment of the beginning of (a) the voice recorder, and (b) the mote data 
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Figure 13: Alignment of the end of (a) the voice recorder, and (b) the mote data 

 
Figure 14: Alignment of the middle of (a) the voice recorder, and (b) the mote data 

 
Figure 15: Time domain plots of: (a) recorder, (b) H1 region, (c) H0 region, (d) mote, (e) 

correct detection locations, and (f) false alarm locations for 4 ft 
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As can be seen in Figure 15, only one correct decision is counted per footstep. 
The probability of detection becomes the number of detections over the number of 
footsteps (the number of rectangular regions in the graph). For false alarms, any energy 
value over the threshold that was outside of a detection region was counted as a false 
alarm. Thus, the probability of error becomes the number of false alarms over the number 
of points outside the detection regions. The resulting ROC curve plots are shown in 
Figures 16 and 17. Note that the data at 6 ft is very out of place. After examining the data, 
there was a problem with the voice recorder, and the data did not match up well. 

 
Figure 16: ROC curve for 2-10 ft 

 
Figure 17: ROC curve for 12-20 ft 

These preliminary results are promising. We are continuing to investigate filter 
structures that are matched to the footstep waveforms to determine if the detector 
performance can be improved through such structures. We have not progressed beyond 
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preliminary investigations. Also, the detection/false alarm points are being looked at to 
make sure that errors in alignment between the two recordings are not causing any 
misleading results.  

Work is currently continuing to improve the results we have so far. We are 
looking into characterizing the mote detectors on different surfaces, such as asphalt and 
dirt, as well as different types of shoes, such as tennis shoes or boots. We are also trying 
to extend the work to a multiple-bit tracker, which uses the mote’s energy values upon 
detection to compute the distance from the target to each mote. The tracker would then 
compute the target’s position through triangulation. Work is being done now to verify an 
energy-versus-distance model that will be used in this tracker. 
 
2.A.3. Georgia Tech Technical Progress 
2.A.3.a Imager IC Development Status 

A 256x256 version of the CADSP imager is currently under test. Temporary 
updates were made to previously designed boards to allow testing. As before, the testing 
interface includes MATLAB code with communication via ethernet to an FPGA 
motherboard which houses daughter boards of our custom design. Changes to FPGA 
code, C code, and MATLAB code were made to work with the newest imager. In the way 
of hardware, some modifications were made to adapt the old setup to the newest chip. 
Since the latest imager utilizes a 0.35 micron fabrication process instead of a 0.25 micron 
process, which has different voltage requirements, some changes were made to reference 
voltages on the previously designed boards. A new wire-wrap prototype board to 
interface the old board design to the newest imager was also constructed. This has 
sufficed for initial testing but once a comfort level has been reached with the design a 
new PCB will likely be designed.  

Utilizing the modified setup, testing of the new IC has progressed. Initial testing if 
some analog circuitry utilized for on-chip bias generation was successful along with 
various mixed signal control structures. Initial control of the sensor array is also 
operational. Some difficulties initially arose in the control, digital noise problems, but 
they have been resolved by the addition of series resistors in clock lines and some 
modified digital sequencing. Here the intermediate wire-wrap board became very useful. 
With that under control, a non-transform low resolution 32x32 test image was read out in 
current mode via a intermediate access point. This was done by grouping pixels into 
blocks, of which there are 32x32. Again the blocks are each 8 pixels x 8 pixels. Currently 
testing has moved to the sensing circuitry which follows the sensor array. The main 
operation here is a logarithmic I-V conversion. Using an on chip current source for 
testing, some initial transfer curves have been obtained that indicate proper operation. 
Right now effort is concentrating on getting good performance from these over as many 
orders of magnitude of current as possible. This directly affects the range of light the 
imager can process. The next step is to read an image using these I-V converters. 

2.A.3.b Optical Flow Algorithm Status 
The goal here has been to develop efficient algorithms for optical flow estimation 

that are closely tied to and accelerated by the CADSP imager.  The algorithm on which 
we base this work is the LK-OFE (Lukas-Kanade Optical Flow Estimation) algorithm, 
which is based on weighted least-squares (WLS). To make fast algorithms, we can apply 
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recursive least-squares (RLS) techniques. This fast version can change O(n3) into O(n2) 
in the number of operations. As motion model is more complex, the number of operations 
saving increases. We are developing a fast gradient-based OFE using recursive least-
squares (RLS) algorithm. Preliminary results indication that, by using RLS, the number 
of operation of WLS-based OFE algorithm can be reduced from O(n3) to O(n2). As 
motion model becomes more complex, the operational saving is expected to increase. The 
RLS-based fast OFE algorithm is anticipated to reduce the system requirements in the 
number of operations and power for designing optical flow estimation embedded system. 

Future work in this area will focus on extending the 1-D window approach to a 2-
D block-based RLS implementation. We will also be investigation ways to solve the 
double-sided exponential weighting case. 

2.A.4. UM Technical Progress 
In the three months since the last quarterly report we have made progress on three 

fronts. 
2.A.4.a. Radio-interferometric Measurements for Self Localization 

We introduced an indirect localization method for estimating sensor coordinates 
from Radio-interferometric measurements (RIMs) data. Localization from RIMs has 
suffered from very high computational complexity; however, this method provides a 
means for fast coordinate estimation. One of the main drawbacks of the new method had 
been its performance when RIMs have high-SNR. This quarter, we dramatically 
improved the high-SNR RIMs localization performance by incorporating an iterative 
feedback loop which adaptively improves the interim (pairwise distance) estimates 
[[Patwari & Hero 2006]]. This fast algorithm achieves 50 cm RMS location errors in 
high-SNR simulations. Further, its calculation can be partially distributed, and is a step 
towards a fully distributed RIM localization algorithm. 

2.A.4.b. Progress on Received Signal Strength Localization Algorithm 
We have been working with Crossbow Mica2 motes and TinyOS to implement 

accurate received signal strength (RSS) measurement and sensor localization platforms. 
We have extensive progress on both fronts. First, the RSS measurement test bed is 
complete and has been used in experimental measurement campaigns to record the time-
varying multipoint-to-multipoint (M2M) radio channel. Additional automated programs 
have been developed to fully calibrate the sensor network to ensure accurate RSS 
measurements. We have used the network to provide experimental channel data to 
multiple projects, including RF motion detection, which has the promise of detecting 
human motion from behind walls. Finally, the measurements can be frequency-hopping 
and thus measure the frequency-variations of a M2M channel over time, or use the 
multiple channels for their frequency diversity which will improve RSS-based distance 
estimates. Finally, progress has been made towards fully distributed implementation of 
the dwMDS sensor localization algorithm, an effort which is now 75% complete. 

2.A.4.c. CCDR Algorithm Progress 
Classification constrained dimensionality reduction (CCDR) offers a way to 

combine dimensional reduction (e.g., Laplacian eigenmaps) with label information. 
CCDR is often used as preprocessing tool for classification. To classify a new point xn+1 
using CCDR, one needs to aggregate the point as an unlabeled point (i.e., the class 
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indicator cn+1(k)=0 for all k) to the collection of labeled training points { } n
ix 1 . Apply 

CCDR to obtain a lower dimensional embedding{ } 1
1

+n
iy . Then apply the classification of 

yn+1 based on{ } n
iy 1  and their respective labels. The resulting CCDR requires a GEVD of 

an (n+K+1)×(n+K+1) matrix (K is the number of classes) for every additional test point. 
We are interested in finding a low complexity out-of-sample extension (OSE) solution to 
this problem. Specifically, we would like to find a solution where we perform the 
(n+K)×(n+K) GEVD once and for a fixed small fraction of the cost of the GEVD 
perform the OSE for every new test point. Nystrom formula offers a solution by which 
the new test point is approximated by a weighted combination of the low dimensional 
embedding of the training points. We have implemented this form of the OSE and 
demonstrated (on the landsat data) performance, which is only slightly worse than that of 
the high complexity procedure described above. We are currently working on an OSE, 
which is based on small perturbation analysis of the GEVD. 

2.A.5. UniMelb Technical Progress 
2.A.5.a Tracker Algorithm #2 For Motes Sensor Network 

In previous reports, we have described two different approaches we have taken to 
the problem of tracking targets using a field of motes. One of these is a hierarchical 
method based on the generation of virtual measurements followed by the use of clutter 
rejection tracking techniques to reject “false measurements” generated by the virtual 
measurement technique. The second is an algorithm that tracks directly from the data, 
and uses the unscented transformation to propagate distributions. During the last few 
weeks, Matlab programs that implement these algorithms have been sent to Raytheon to 
be incorporated into the mote demonstration. The algorithms have been coded so they can 
be used interchangeably as modules within the same program, that is, they have a 
common interface: inputs and outputs; thus facilitating comparison.  Documentation has 
been provided within the code to explain the operation of the algorithms. 

2.A.5.b Raytheon Technical Support 
Research undertaken by Raytheon through its liaison with The University of 

Melbourne can be divided into four categories: 

•  Theoretical Scheduling 
•  Scheduling Passive Sensors for Geolocation 
•  Waveform Scheduling Against Smart Targets 
•  Random Projections for Radar 

Details on these research areas follow. 

Theoretical Scheduling 
 In previous reports, we have outlined analytic results for optimal scheduling of 
Gauss-Markov (GM) systems for terminal cost functions.  Scalar systems were restricted 
to random walks, or 

kkk wfxx +=+1  

 with f = 1, and wk a noise term, with only one of process noise covariance, initial state 
covariance, or measurement noise covariance varying across systems.  Raytheon, in 
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conjunction with The University of Melbourne has worked on generalizing the results to 
include more general GM systems.  During the quarter, we have developed preliminary 
results for f > 1; more details are forthcoming following a check of the results, and will 
likely be presented in a journal paper. 

 Furthermore, we have considered vector GM systems, with state estimates being 
computed with a fixed-gain filter.  Corresponding analysis for using Kalman filters 
instead of fixed gain filters is complicated by the matrix inversion in calculating the 
Kalman gain.   

We have considered a variety of ad hoc indexes for both scalar and vector 
systems in an attempt to analytically determine optimal scheduling; however, none of 
these have been optimal in a general setting.   

Scheduling Passive Sensors for Geolocation 
As previously mentioned, we are considering a novel form of geolocation using a 

laser rangefinder with passive secondary receivers.  While we formulated the problem in 
the last quarter, we have begun to consider scheduling passive secondary receivers for 
tracking, instead of assuming that all sensors record measurements during each time step.  
Scheduling is performed by minimizing a cost 

][ kPEN += αχ  

where α is a cost for using N receivers, and E[Pk] is the expected track error covariance.  
In our formulation, Pk is determined by using an unscented Kalman filter (UKF), as the 
covariance depends only on the measurement statistics, projected covariance, and sigma 
point selection scheme.  While a myopic approach may not be strictly optimal, extending 
the horizon to greater than one suffers, as future P values do depend on measurements, 
through the dependence of a sigma point selection scheme surrounding the future state 
estimates.   

Waveform Scheduling Against Smart Targets  
One problem we address during ISP is the effectiveness of a waveform against a 

maneuvering target.  To this end, we are trying to evaluate waveform performance 
against smart targets, in the assumption that the target can observe waveforms being 
utilized against it, and react accordingly.  This yields a game in which the target, upon 
realizing that it is being observed, may adjust its behavior.  The RF may detect this 
reaction, and modify its behavior.  The cycle may continue ad nauseum.   

 We are currently investigating an idealized version of the problem, in which the 
target and sensor have a finite number of known strategies, of which they select a pure 
strategy for every engagement in a rational manner.  Currently, we are investigating 
target models for a constant acceleration or constant turn, with a hypothetical sensor that 
is able to take position and velocity measurements.  A mathematical game is formulated 
using an upper bound of estimated state error covariance using results from Sinopoli et 
al.   

 We realize that this is a rather idealized case, and hope to extend results in the 
future of ISP, and related work on WAS.   

Random Projections for RF 
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 In the presence of clutter, it has been proposed to use a minimum value measure 
of effectiveness (MVMOE).  As mentioned, that measure can be difficult in practice due 
to the inversion of a generally ill-conditioned matrix.  While that problem has been 
circumvented by projection of the matrix onto its relevant range space, we aim to solve 
the problem via random projection, which has a documented effect of effectively 
whitening the information.  Whether or not this whitening removes the information that 
differentiates one waveform from another remains to be seen. 

 Furthermore, we aim to use the Danzig Selector (DS) as a possible means to 
identify the presence of targets.  Unfortunately, the DS requires an unknown vector to be 
sparse in some known basis.  It remains to be seen whether or not this assumption is 
applicable to general radar problems. 

2.A.5.c Tracking with Motes 
1. Scheduling for Distributed Passive Sensors 

Recent advances in low-power micro-sensors and wireless network technology 
have led to an increase in the use of networks of distributed passive sensors. Such 
networks are typically made up of relatively cheap sensors, with limited processing 
resources and battery life. The limited on-board resources prevent significant 
computations being performed at the sensor level. Instead, they transmit information over 
bandwidth limited communications channels. However, typically communications 
consumes more power than either computation or sensing.  

Common assumptions when tracking a target moving through a distributed sensor 
network include the assumptions that: 

 all sensors are active at all times; and 
 all information can be transmitted to some central processor. 

In practice, both of these are unrealistic. An additional, common assumption is 
that the sensor network is homogeneous, i.e. that all the sensors are of the same type. In 
this part of the project we will design and evaluate the performance of a target tracking 
algorithm for a distributed network of passive sensors that relaxes all three of these 
assumptions. 

The particular scenario we will consider is that of a single target moving through 
a field of heterogeneous sensors. The network will be made up of primarily acoustic 
sensors with an additional, smaller number of infrared (IR) sensors. The acoustic sensors 
are proximity sensors, i.e. they transmit a packet when they detect a target within their 
sensing range. The IR sensors are more sophisticated. In addition to detecting a target, 
they are capable of determining in which quadrant of their sensing range the detection 
occurred. 

The tracking algorithm will operate adaptively. It will schedule which sensors, in 
terms of both location and type, are to be activated at the next scan, with the goal of 
minimizing an appropriate cost function. This cost function will compute the trade-off 
between resource usage (both battery power and communication bandwidth) and 
detection and tracking accuracy.  

The tracker evaluation will be performed off line. Data will be collected from 
experiments of a target moving through the sensor field when all sensors are active and 
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all data is transmitted. The scheduling tracking algorithm will then select the appropriate 
subset of the collected data to form its tracks. The performance of the scheduled tracker 
can then be compared to the performance of a tracker which has the maximum amount of 
data available to it. 

This work will consist of two major parts: 
 the design of a tracking algorithm that uses a mix of acoustic, proximity sensors 

and IR sensors; and 
 the design of a scheduled version of this tracking algorithm. 

2. Computationally Efficient Mote Localization 
2.1 Overview 

In [Maroti et al. 2005] an algorithm is presented for performing relative 
localization of a network of N MICA2 motes using the radio interferometric positioning 
system (RIPS) technique. It requires O(N2) measurements to be taken and uses a genetic 
algorithm based method for computing the coordinates of the motes. The method 
assumes all motes can communicate with each other. The goal of this project is to 
develop a robust, computationally efficient method of localizing a large network of motes 
using the RIPS method. In a large network, the assumption that all motes are in range of 
each other will not hold. 

Each RIPS measurement requires four nodes, A, B, C and D. Two nodes transmit 
at different, but relatively close frequencies, while the other two act as receivers. The 
resulting relative phase difference between the received signals is a function of the 
pairwise distances between the nodes. Figure 18 shows the case when A and B are the 
transmitters and C and D are the receivers. The resulting relative phase difference yields: 

DABCD = d(A,D)-d(B,D)+d(B,C)-d(A,C)       (6)  

where we call DABCD the RIPS measurement. 

 
 

Figure 18: RIPS measurement process: A & B are transmitters; C & D are receivers 
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Similarly, when A and C are transmitters and B and D are the receivers the RIPS 
measurement is 

DACBD = d(A,D)-d(C,D)+d(B,C)-d(A,B)      (7) 

For a given set of four nodes, it can be shown that these are the only two independent 
measurements that can be made. That is, all other combinations of transmitter and 
receivers pairs yield measurements which are linear combinations of Equations 6 and 7. 

2.2 Efficient Localization 
Given knowledge of the location of three anchor nodes, A, B and C and two 

independent RIPS measurements we have developed a two-stage, closed-form method for 
determining the location of the fourth node D. This method is based on a similar 
approach in [Mellon et al. 2003] for localization using time difference of arrival (TDOA) 
measurements. 

The first step requires the solution of a quadratic that calculates the distance 
between D and one of the anchor nodes. This result is then substituted into a set of two 
linear equations to determine the location of D. Thus, this method requires only O(N) 
RIPS measurements. 

Given appropriate geometry, the quadratic equation in the first step will have a 
single, positive solution. This yields a unique location for the unknown node. In some 
cases, there will be two possible solutions. To resolve this ambiguity an additional RIPS 
measurement, using an additional anchor node, is required to localize D. 

2.3 Effect of Noise in the RIPS Measurements 
The localization technique outlined in the previous section will give the exact 

location of the unknown node when there is no noise. In practice, there will be 
uncertainty in the RIPS measurements and possibly also in the locations of the anchor 
nodes. In this section, we outline the preliminary studies we have done to investigate the 
effects of these sources of uncertainty. These results are all based on simulations. An 
analytical study of noise effects is part of on-going work. 

In the simulations, we assume that the locations of the anchor nodes are known 
precisely but there is zero mean Gaussian noise in the RIPS measurements, with variance 
given by σ2. Figure 19 shows the effect of this noise on localization performance when σ 
= 0.1. The actual location of each node that is to be localized is given by the blue dot. The 
blue ellipses indicate the uncertainty in the distance between each unknown node and 
node A as a result of noise in the RIPS measurements when (A, B) and (B, C) are the 
transmitter pairs. The green ellipses indicate the equivalent uncertainty when the 
transmitter pairs are (A, C) and (B, C). The clear area around node A represents the area 
when there are two possible solutions for the distance between A and the unknown node, 
so it cannot be localized unambiguously. 
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Figure 19: Uncertainty ellipses in computed distance between anchor node A and unknown nodes 
when there is noise in the RIPS measurements. Blue dots represent true node locations. Blue and 
green ellipses show the uncertainty in the true distance for two possible sets of transmitter pairs 

2.4 Localization Propagation 
The analysis above assumed all nodes are in range of each other. In practice, this 

will not be the case. Instead, once all nodes in range of the original three anchors are 
localized, some subset of these will then become anchor nodes in turn to localize more 
remote nodes. As a result, any errors in their estimated positions will propagate. 
Currently, we are investigating robust methods for localizing a large field of sensors, 
where the surveillance region is larger than the radar range, which will ameliorate the 
effect of noise propagation. This will be achieved by an appropriate choice of new sets of 
anchor nodes which have the best geometry and possibly by the taking of additional 
measurements. 

2.5 Future Work 
The method discussed in the previous section requires three anchor nodes in 

known locations with overlapping coverage areas. There are scenarios where such a 
distribution of nodes is reasonable, for example perimeter security of a relatively small 
area. However, for larger areas this is not the case. To deal with such scenarios we are 
investigating computationally efficient and robust solutions where anchor nodes are 
randomly located throughout the surveillance region. 

Consider the case where a subset of nodes is equipped with GPS so that their 
locations can be measured accurately. Suppose these are distributed randomly over the 
surveillance region, but at a sufficient density that there is overlap between the coverage 
regions of adjacent anchor nodes and multiple nodes within that overlapping area. An 
example of this is shown in Figure 20. Here A and D are anchor nodes; B, C, E and F are 
pseudo-anchors; and X, Y and Z are nodes whose location is unknown. The coverage 
region of each of the anchors is shown by the dashed lines.  
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Suppose the location of each of the nodes in the overlapping area, X, Y and Z, are 
computed using the triple (A, B, C) as anchor nodes and then the triple (D, E, F). Thus, 
for each node in the overlap there will be two possible locations which are functions of 
the unknown locations of the pseudo-anchors. We conjecture that it will be possible to 
localize the pseudo-anchors by combining these pairs for all three unknowns. Once the 
locations of the pseudo-anchors are determined, the location of all nodes in both regions 
can, in turn, be calculated. 

 
Figure 20: Distributed anchor nodes example. True nodes are given by closed circles, pseudo-

anchors by open circles and nodes of unknown locations by squares. 

2.A.5.d Waveform Scheduling for Maneuvering Targets 
1 Introduction 

We describe some extensions of earlier work on waveform scheduling for 
maneuvering targets. Our original work [Howard et al. 2004] on waveform scheduling 
has been extended by our colleagues at ASU (Papandreou, Morrell, Sira, [4]) to 
accommodate more suitable waveform libraries using nonlinear FM waveforms. Here we 
take the ASU waveform library and fit it into our tracking and cost function model. 
Simulations are done to show the effectiveness of waveform scheduling in this context, 
where effectiveness is measured in terms of determination of the dynamical tracking 
model and the RMS error of the tracker. 

For the purposes of this report, we assume a single maneuvering target. The 
tracking is done using an Interacting Multiple Model (IMM) filter. Our cost function for a 
waveform is (an approximation to) the mutual information between the measurement and 
the dynamical model of the IMM. 

2 Agile Waveform Tracking with IMM filter 
We assume that the dynamical models and the sensor measurement processes 

are linear and described by the following equations 

( ) ( )kkkk xFx Θ+Θ= − ν1  
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( )kkk Hxz φω+=          (8) 

where the dynamical model kΘ is a discrete random variable, which at time k can take 
any value MK,1 ; Nk K,1=φ  is the waveform used to obtain the measurements at time 
k. A number of generalized frequency modulated chirps form the library of waveforms. 
We write kx  for the state of the track and kz  for the measurement at time k. 

( ) ( )MFF K,1  are the state propagation matrices for the different maneuvers, H  is the 
measurement matrix. Process noise is denoted by ( ) ( )Mνν K1  and measurement noise by 

( ) ( )Nωω K1 . These are all zero mean, white, and uncorrelated Gaussian noise sequences 
with covariance matrices ( ) ( )MQQ K1  and ( ) ( )NRR K1  respectively. We assume that 
changes in target trajectory can be modeled as a Markov Chain with given transitional 
probability matrix P , i.e., 

{ } [ ]MjiijPP kkji ,1,;| 1, ∈=Θ=Θ= −        (9) 

The trajectory of the target can be described at any time by one of the M dynamical 
models. The tracker switches modes between the dynamical models using the 
measurements, and thus facilitates tracking of maneuvering targets. Our problem is to 
choose the waveform which will minimize the entropy rate of dynamical model. 

Our aim is to achieve better tracking performance with the IMM filter by scheduling the 
waveforms. 

 
Figure 21: Upsweep Generalized Chirp Waveforms and Their Ambiguity Functions 

3. Non-Linear FM Waveform Library 
In these experiments, the linear chirp waveform library [Howard et al. 2004] is 

enhanced with generalized FM chirps, similar to the library in [Sera et al. 2006]. Along 
with linear FM up-sweep and down-sweep chirps we have considered power, hyperbolic 
and exponential FM up-sweep and down-sweep chirps. Each waveform can be 
represented as 

( ) ( ) ( )( )tfitwts λπ2exp=         (10) 

where w(t) is a complex envelope (identical for all waveforms in the library), λ is a 
sweep constant and f(t) is a phase function: 
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Figure 21 shows an example of such waveforms for positive λ (i.e., up-sweep 
chirp) and their ambiguity function. Of course, to be complete, the library must consist of 
both up and down-sweep waveforms of these types. In high SNR the waveform 
covariance matrix can be approximated the CRLB on the estimation of delay and 
Doppler, which is obtained by inverting the Hessian of the Ambiguity Function, 
evaluated at the true target delay and Doppler [Van Trees, Kershaw & Evans 1997]. 

4 Cost Approximation 
In this section we derive an approximate formula for calculating the cost ( )ZI ,Θ  

in the form of the expected Kullback-Leibler divergence from { }1| +ΘkkZP  to { }kZP . We 
have: 
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where { }jiPB kkij =Θ=Θ= +1| is the backwards transition probability. 

In order to calculate the Kullback-Leibler divergence, we approximate 
{ }jZP kk =Θ +1| and { }kZP  by single Gaussians ( )jj Ry ,ℵ  and ( )Ry,ℵ  respectively, 

where: 
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and ( )izkˆ  is the predicted measurement for ith model. 
Using the formula for Kullback-Leibler divergence from a Gaussian to a 

Gaussian distribution, we obtain: 
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for N-dimensional Z. 

5 Experimental Results 
We have considered tracking of a single maneuvering target in range-Doppler 

coordinates with five acceleration modes: -20,-10, 0, 10, 20 m/s2 using IMM filter as in 
[Howard et al. 2004]. In the first set of experiments the waveform library consisted of 
linear maximum bandwidth up-sweep and down-sweep chirps and six max bandwidth up 
and down-sweep power FM chirps for k = 2.5, 3, 3.5. The up-sweep waveforms, their 
ambiguity function and measurement error covariance are shown in Figure 22. For down-
sweep waveform ambiguity and error covariance are just the mirror image of the up-
sweep chirps. The outcome of the experiment is presented in Figure 23. The second set of 
experiments was performed for libraries consisting of all described types of generalized 
FM. The result is represented on Figure 24. 

 
Figure 22: Upsweep Chirp Waveforms, Ambiguity Functions & Error Covariance 

 
Figure 23: Tracker Performance Comparison: LFM and LFM+PFM waveform libraries  
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Figure 24: Comparison of Tracking Performance for LFM, LFM+PFM, LFM+PFM+HFM and 

LFM+PFM+HFM+EFM libraries of waveforms 

6 Conclusions 
The rather obvious conclusion is that the performance of the tracker improves 

with the additional waveforms. However, that improvement is not significant except 
perhaps in the velocity estimate emanating from the tracker. The PFM waveforms show 
significant improvement in this estimate; the addition of HFM and EFM waveforms 
appear, at least in these simulations, to overcome some losses in position estimation from 
the addition of the PFM waveforms alone. Clearly more simulation work is needed here 
over many different scenarios and with a variety of tracker models. 

2.A.5.e Progress in Other Sensor Scheduling  
Under ISP Phase II, we have been investigating two sensor scheduling 

evaluations. One research area is sensor scheduling for counter swarms, particularly for 
the TBM scenario. The second research area is sensor scheduling for passive emitter 
geolocation. We now discuss in more detail our approach and progress in these areas. 

1 Sensor Scheduling for Counter Swarm 
1.1 Introduction 

Evaluation one explores gains that can be achieved by smart sensor scheduling 
when tracking a large number (swarms and TBM) of targets. By smart sensor scheduling 
we mean individual track update choice. 

The sensor is assumed to operate in two modes. Mode one, or Surveillance Mode, 
is assumed to take a fixed percentage of time, in our example 20%. In this mode the 
sensor makes one sweep of the whole surveillance area, with the aim of finding new 
targets, as well updating all existing tracks. In mode two, or Track Update Mode, only a 
single potential target (track) is updated at a time, until the time for this mode runs out. 

In both modes of operations, a low, but non-zero, clutter measurement density 
exists. In both modes of operations, targets are detected with probability of detection less 
than one. In this environment, automatic target initialization creates both true tracks and 
false tracks. True tracks are tracks which follow a target, usually, but not always, 
initialized using detections from this target. False tracks do not follow a target, one or 
more clutter measurement is usually involved in their initialization; or they may be 
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initialized by detections from different close targets in different scans. It is also possible 
for false tracks to become true tracks and vice verse. True track may become false either 
because the tracker has lost the target, or the target has physically ceased to exist. 

Sensor scheduling is usually designed to minimize track estimation errors. Here 
we take another approach. We deem that the most important task is to determine the 
number of targets in the surveillance area and their approximate position, estimation error 
minimization is the second priority. 

Each track can have two states. Newly initialized track is a tentative track. Each 
track recursively updates a track quality measure. If the track quality measure falls below 
a termination threshold, the track is deemed to be false and removed (terminated). If the 
track quality measure rises above a confirmation threshold, the track is deemed to be true 
and confirmed. This procedure is termed “false track discrimination”. 

The sensor thus reports the confirmed tracks as true tracks. As the tracker operates 
in a stochastic environment, the false track discrimination will result in errors, some true 
tracks will get terminated, and some false tracks will get confirmed. Sensor scheduling in 
Evaluation One aims to improve the false track discrimination properties. 

1.2 Approach 
A number of simplifying assumptions are employed, which: (i) will not change 

the nature of the results, e.g. proof of concept will be valid; and (ii) significantly simplify 
the software simulation. Once the proof of concept is obtained, the simplifying 
assumptions will be removed sequentially to obtain more realistic results. The 
simplifying assumptions are: 

 Targets will move with uniform motion, corrupted by (some) plant noise.  

 Targets are detected with constant and known probability of detection. 

 Clutter measurement density is small but non-negligible. It is Poisson distributed 
with uniform spatial density.  

 Sensor has infinite resolution.  

 Sensor provides 2-D information: range and bearing.  

 Target measurements can be linearized using the unbiased measurement 
conversion. Thus sensor measurement errors are assumed Gaussian in Cartesian 
coordinates, with covariance matrix a function of range and bearing. 

 Sensor provides measurement position only; measurement amplitude and Doppler 
are not provided. 

 Sensor works in two modes: 

o Surveillance mode, in which a sweep of the whole surveillance area is 
performed, including the areas covered in the Track Update Mode. This 
mode will occur at regular intervals, and will take a fixed percentage of 
total time. 

o Track Update mode, in which sensor visit designated tracks, one at a time, 
unless they are in close proximity to each other. It is assumed that each 
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update takes a fixed time interval, independent of the track position. It is 
also assumed that the probability of detection and clutter measurement 
density will be the same in both modes of sensor operation. 

The system under consideration then consists of a sensor, tracker and Sensor 
Scheduling Control, where the sensor is as described above. 

1.2.1 Tracker Choice 
The target tracker needs to provide track trajectory state estimation and the track 

quality measure. The probability of target existence is chosen for the track quality 
measure, mainly because the Melbourne University group has extensive and positive 
experience using trackers based on it. 

Linear Multi-target Integrated Probabilistic Data Association (LM IPDA) target 
tracking filter has been chosen for track update. It has been shown that, in similar 
environment, this tracker is capable of tracking a large number of targets using 
reasonable computational resources. In a recent comparison carried under this evaluation, 
it is shown that even applying a particle filter based target tracker will not significantly 
improve the performance. Simple thresholding of the probability of target existence is to 
be used for target confirmation and termination decisions, and the thresholds are to be 
determined experimentally.  

Automatic track initiation is to be applied. The system will assume no prior 
information on the number and position of the targets. However, to prevent from the 
system constantly initializing new tracks, only measurements obtained by sensor in the 
Surveillance Mode are to be used to initialize new tracks. Existing tracks are updated 
using measurements obtained by sensor in the Surveillance Mode, as well as 
measurements obtained by the sensor in the Track Update Mode. 

1.2.2 Sensor Scheduling 
Two kinds of sensor scheduling logic are to be employed. The baseline logic will 

use the round robin updates of each track in the Track Update sensor mode. The one step 
look ahead logic will choose which track to update based on the probabilities of target 
existence. The following goals of the optimization are identified: (i) minimize the number 
of tentative tracks, i.e., increase the speed of false track discrimination. Each tentative 
track should either be confirmed or terminated as soon as possible; and (ii) minimize the 
time delay recognizing that the target has disappeared, or is lost; i.e., quickly terminate 
confirmed tracks which are or have become false. 

To achieve these aims, the following cost functions have been identified for 
tentative track i at time k with current value of the probability of target existence ( )ikψ : 

 Expected number of track updates for track i to get confirmed, given that it is a 
true track, and given current value of the probability of target detection, denoted 
here by ( )ic

kτ ; and 
 Expected number of track updates for track i to get terminated, given that it is a 

false track, and given current value of the probability of target detection, denoted 
here by ( )it

kτ . 
The total cost function of tentative track i at time k is ( ) ( ) ( )( )iiic t

k
c
kk ττ ,min= . 
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The following cost function has been identified for confirmed track i at time k 
with current value of the probability of target existence, ( )ikψ : 

 Expected number of track updates for track i to get terminated, given that it has 
become a false track, and given current value of the probability of target 
detection, denoted here by ( )it

kτ . 

Total cost function of confirmed track i at time k is ( ) ( )iwic t
kck τ= , where the 

weight factor cw  is used to determine the relative weighting between confirmed track 
update and tentative track update. In the Track Update Mode the costs for each track are 
determined before each dwell, and the track with minimal cost is updated. 

2.3 Progress to Date 
To date, the following progress has been achieved: 

 Tracker choice of LM IPDA has been taken, based on tracking of large number of 
targets in significant clutter [Mus 2005]. Particle filter implementation has been 
shown to improve upon LM IPDA; however, the difference is not significant 
enough to warrant additional complexity and computational requirements 
[MusMore 2006].  

 Sensor management scenario has been updated. 
 Cost functions have been determined. 

2.4 Future Work 
Cost functions need to be evaluated, i.e. the functional descriptions of ( )ic

kτ  and 
( )it

kτ  have to be obtained and verified using simplified simulations. Proof of concept has 
to be achieved by integrated simulation and evaluation based on the scenarios and cost 
functions described. The following statistics are of importance: 

 Average number of scans needed to confirm a true track; 
 Average number of targets not followed by a true track; 
 Average number of scans during which a confirmed false track is visible; 
 Average life of confirmed false track; 
 Maximum number of targets that can be updated before sensor resources run out. 

These statistics have to be gathered for both baseline sensor operation and 
scheduled sensor operation. Some simplifications may need to be removed to obtain more 
realistic comparison between the base scenario, and cost based scenario. However, 
removing all the simplifications is not realistic in the time-frame/human resources 
available. 

2 Sensor Scheduling for Passive Geolocation 
2.1 Introduction 

Sensor Scheduling for Passive Emitter Geolocation Evaluation aims to use 
sensors located on the networked UAVs. In [Okello] the problem of emitter geolocation 
using a set of netted UAVs was investigated. It achieves geolocation by processing 
measurements corresponding to a single pulse that is visible to each of the UAVs. Based 
on this method a minimum of three UAVs are required when the transmitter is known to 
be on the surface of the earth and four if the altitude of the transmitter is not known. 
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While this concept is quite easy to demonstrate, there are a number of problems 
that require solving before the method can be implemented in practice. These problems 
include: (i) the need to determine UAV trajectories for optimal geolocation; (ii) the need 
for an association algorithm capable of grouping together measurements from a common 
pulse given the shear number of pulses that are detected by each UAV; and (iii) the need 
for a suitable low bandwidth communication network for measurement transfer, again 
given the large number of pulses detected by each UAV. 

Thus, given the bandwidth constraints, only a small number of measurements may 
be transferred between the UAVs, and an event when all UAVs involved actually receive 
the same pulse needs to be identified. The complexity of each of these problems is 
prohibitive when three or more netted UAVs have to be deployed. 

2.2 Approach 
In order to reduce the complexity of these problems, we consider a simpler system 

consisting of two netted UAVs in which geolocation is achieved by processing multiple 
time difference of arrival (TDOA) measurements collected over time by the UAVs as 
they traverse the surveillance region. Let us assume that the two UAVs move along a 
circle with a 180o degree separation. When a pulse is detected by the two UAVs, a range 
difference r21 is generated and a processing algorithm then converts it to an appropriate 
set of 2-D coordinates that lie on a hyperbola. Figure 1 shows a typical scenario with one 
scanning radar emitter and two UAVs that move diametrically along a circle and includes 
the one–σ hyperbolae of range difference measurements. Over time the measurement 
hyperbola rotates and changes shape but remains pivoted at the emitter location. 

A target tracking algorithm can be initialized and updated using these 
measurements, with the goal of estimating the emitter position. The problem of doing so 
is the extreme non–linearity of these measurements. In principle, a particle filter solution 
can be applied, but would require a huge number of particles to cover the uncertainty 
area. Instead we propose the following approach. The measurement uncertainty pdf 
depicted in Figure 25 can be approximated by a sum of Gaussian pdfs. Each element of 
the sum is a weighed converted measurement and starts one track component. Subsequent 
measurements can also be modeled by a sum of Gaussian pdfs, and used to update the 
track. 

The proposed algorithm is a variant of the Integrated Track Splitting filter (ITS), 
proposed in [MusEvans 2006]. The track consists of components, one component for 
each history of the converted measurements. ITS recursively calculates the relative 
probability of these components. As the UAVs move and provide new measurements, the 
filter components which are far from the actual emitter position are going to diminish and 
be removed. Remaining components will converge on the radar emitter position with 
more accuracy over time. 

For a stationary emitter, measures of performance will include speed of 
geolocation and accuracy of the location estimates. Constraints for the tracking problem 
include communication bandwidth, UAV trajectories, and complexity of association 
algorithm. The sensor scheduling problem can be described in this way: Given UAV 
speed, what is the optimum radius of the circle they traverse? The bigger the distance, the 
smaller distance between the one– σ hyperbolae and potentially more precise 
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measurements may be obtained. On the other hand, given the UAV speed, the bigger the 
distance the longer it will take them to rotate a given angle and provide hyperbolae 
intersection with small cross section. 

We seek to find this optimum value, as well as determine the minimum time 
necessary to locate the emitter with a certain error. In the proof of concept phase, it is 
assumed that both UAVs and the emitter is in one plane. Adding the altitude of the UAVs 
and the curvature of the earth will complicate mathematics, while not impeding the proof 
of concept. 

3.3 Progress to Date 
The Gaussian Sum Measurement model and ITS tracker have been simulated and 

proven using highly nonlinear measurements. 

3.4 Future Work 
The first step is to find reasonable Gaussian sum presentation of the uncertainty 

shown in Figure 25. This involves determining the covariance and relative weight of each 
Gaussian sum element. The next step is to implement this scenario and simulate it for the 
proof of concept. Using the results, the optimum distance between UAVs, given speed 
and a priori distribution of the emitter should be determined. 

 

Figure 25: Scenario showing a scanning radar emitter, a pair of netted UAVs and the 
one−σ hyperbolae of the range difference measurements 

2.A.6. FMAH Technical Progress 
Overview 

The goal of this portion of the project is to apply and adapt geometric diffusion 
methods of Coifman et al. to IR video data. As a simplification, we consider direct 
application of diffusion operators to the data itself. 

Basic algorithm 
Consider an image u consisting of a rectangular array of pixels, or more generally a 
rectangular array of vectors of fixed length (such an array of vectors might be, for 
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example, a gradient map or an optical flow field; we understand pixel to mean either 
scalar or vector values). We construct a diffusion filter K, such that repeated application 
of K to u suppresses the background while enhancing or preserving regions of interest in 
the image. Furthermore, we reinitialize the filter after a fixed number of steps, using the 
output of the previous iteration to generate a new filter which is then applied iteratively to 
the output of the previous iteration. 

Construction of K proceeds as follows. For each pixel j in u, a group of 
neighboring pixels of size (2n+1) × (2n+1), denoted x(j) and center on the pixel j, is 
selected. Next, a scalar non-negative kernel function G is selected to measure the degree 
of similarity or difference of two groups x(i) and x(j). The function G is therefore a 
bivariate function of vectors; each vector is composed of groups of pixels. If x(i) = x(j), 
then G(x(i),x(j)) = 0, and if x(i) and x(j) are “dissimilar” then G(x(i),x(j)) should be large. 
Usually, G is designed to be a symmetric function of its arguments, so that the degree of 
similarity between x(i) and x(j) is the same as the similarity between x(j) and x(i).  

From this kernel function, together with an integer N and a small parameter ε, a 
matrix K´ is constructed so that 

K ′
ij =

e−G(x(i), x( j ))/ε if | i − j |≤ R
0 otherwise

 
 
 

. 

Then, K is constructed from K´ by normalizing the row sums to one; that is, 

K ij = K ′
ij / K ′

il

l
∑  where the sum is over the columns. The matrix K may be viewed 

alternatively as a diffusion operator, since its action on u is identical to a forward time 
step in a discrete diffusion problem, or as a Markov matrix, since the sums of its rows are 
unity. Each row has (2R+1)2 non-zero entries, and the total number of rows is equal to 
the number of pixels in u. 

A relatively simple but powerful choice of G is given by the Euclidean 
distanceG(x(i),x( j)) = x(i) − x( j) 2 . In practice we use this choice exclusively, and 
instead apply transformations to u itself before computing the diffusion filter. We detail 
several examples of such transformations below. 

Enhancements to the algorithm 
As demonstrated in previous reports, the above algorithm is remarkably powerful 

for denoising/segmenting noisy IR images. Now we present a number of enhancements 
of the algorithm. 

Namely, the filter K may be constructed from a transformed version of the input 
image u, denoted f(u). For example, we might compute the gradient vector field of the 
image, then construct the filter from the gradient vector field. K could then be applied 
back on the image itself, or to the gradient field. 

For the time being, we consider two transformations: 

1. Local covariance matrix. In this case, consider a square patch of pixels centered on 
pixel i in the original image, as well as square patches of pixels center on neighboring 
pixels, for a total of (for example) 9 square patches of pixels. From this set of 9 vectors 
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we construct a 9 x 9 covariance matrix. This 9 x 9 covariance matrix is the vector-valued 
pixel i in the image f(u).  More generally, fewer or more vectors may be chosen to form 
the covariance matrix; a special case would be only 1 vector, in which case f(u) is an 
image whose pixels are local variances of u. 

2. Two-scale variances. Consider two square patches of pixels, each of a different size, 
centered on pixel i in the original image. Now we compute the variance of each patch to 
form a vector of length 2, which is the vector-valued pixel i in the image f(u). 

Both of these transformations are meant to capture local statistics of the image, so 
that neighborhoods with similar local statistics will diffuse to one another in the diffusion 
process. 

Thus, the segmentation algorithm has the following steps: 

Let u1=u or f(u). For m=1,…,M: 

1. Define Km using input um as above. 
2. Compute um+1=(Km)N um 

The input to the algorithm is the original image u. The parameters of the algorithm are 

•  f, G,ε (and any parameters needed by f and/or G). 
•  R,n. The radius of the filter window and the radius of the pixel sets used to form 

local neighborhoods in the image. 
•  M,N. The number of outer and inner iterations segmentation iteration. 

Application to moving target segmentation; optical flow 
In many applications of interest, the goal is to separate or segment moving targets 

from background clutter. In such situations, the image is first processed using an optical 
flow algorithm. Such algorithms attempt to determine the local motion vectors of features 
within a sequence of image frames. The use of optical flow in conjunction with diffusion 
map processing was proposed by Mr. John Costello (Raytheon) and is an excellent 
example of the highly collaborative nature of our ISP II program. 

Though a variety of optical flow algorithms are in use today, we highlight the use 
of one in particular1, based on phase gradients.     

Below, we apply the algorithm to a sequence of video frames shown in Figure 26. 
(The imagery chosen is a publicy-available visible-light video sequence; substantial 
testing on uncooled IR imagery was also done, but the results are not cleared for 
inclusion in this report). The goal of the algorithm is to segment the image into “Target” 
and “Nontarget” regions. After the segmentation process, the segmented image could be 
used to pull out the target portion of the image for further analysis (such as 
classification/identification, etc.); for now, we focus only on the segmentation process. 

Figure 28 shows first frame of the sequence, together with the magnitude of the 
optical flow vectors. Since the camera is stationary, the background is relatively 
homogeneous, but some amount of noise is present. 

                                                 
1 “Computation of component image velocity from local phase information.” D.J. Fleet and A.D. Jepson, 
International Journal of Computer Vision, 5:1, 77-104 (1990). 
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Figure 26: Four frames from the “Taxi” video sequence, courtesy Karlsruhe University 

Institute for Algorithms and Cognitive systems 

Figure 29 shows the result of segmentation mapped back to the original frame. 
We apply thresholding to the segmented flow image, then use the result as a mask on the 
original image. Fairly good segmentation results are obtained, though some smaller 
moving objects such as pedestrians are missed, and the vehicle boundaries are not very 
well resolved. 

 
Figure 27: First frame of video sequence, together with the magnitude of the flow vectors 
computed via phase-gradient-based optical flow. Segmentation is already relatively good, 

though there is some noise present 

Figure 29 shows the magnitude of the optical flow vectors before and after segmentation.   
In this case we used a special case of the local covariance matrix for f; f(u) is simply an 
image of local variances of u. 

 

Figure 28: R=n=1, ε = 0.0003, M = 5, N = 30, f = local variances of patches of size 
17x17. Segmentation consists mostly of removing small noisy regions 
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Figure 29: Pointwise product of original image with thresholded flow vector magnitude 

image. Parameters were tuned for vehicle-sized objects, so pedestrians were lost 

The overall process applied to achieve the results of Figure 28 is: 

Optical flow  Diffusion-based segmentation  Thresholding  Masking 

Next, we consider the same sequence of images with an artificial panning motion. 
This is an attempt to simulate a video sequence in which the camera is situated on a 
moving platform. The camera pan is simulated by shifting the image to the left by a fixed 
amount in each successive frame. Figure 29 shows the original frame together with the 
optical flow magnitudes. Additional noise and background clutter is now present in the 
optical flow image. Figures 30 and 31 show the segmented and masked images. Results 
are slightly less clear than in the stationary case, but still quite good. 

 
Figure 30: Optical flow applied to image sequence with camera pan. The background 

regions now contain noise due to the camera panning motion 

 
Figure 31: Segmented optical flow (R=n=1, ε=0.000002, M=10, N=100, f = local 
variances of patches of size 21 x 21. After diffusion the background is relatively 

homogeneous and much noise has been removed 
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Figure 32: Masked frame after thresholding. Targets are fairly well segmented though 

some noise is still present 

Note: FMAH also processed an extremely challenging set of UCIR imagery on-site at 
Raytheon. The results were extremely promising; however, the imagery is ITAR 
controlled and program-sensitive. As with the radar processing results discussed in 
Section 2.a.1.c, the results are available to the DARPA PM and the ONR COTR. 

Application to SAR images 
SAR imagery typically contains noise plus target with relatively good separation 

between the local statistics of the two. Therefore, we applied the diffusion filter based on 
multiscale variances to some sample SAR imagery. Though we cannot show the results in 
this report, the results were encouraging. 

Possible next steps 
•  Test performance of algorithm on images at a variety of ranges, with the goal of 

developing a ‘training’ set of parameters for a given target at close range, which 
can then be used for target segmentation/identification at longer ranges. 

•  Develop algorithms for automated or semi-automated choice of parameters 
(currently parameters are selected through manual trial-and-error). 

•  Research optical flow algorithms and develop a better integration of optical flow 
and diffusion filters into a single unified algorithm for segmentation of images 
with moving targets. 

2. B. Publications  
There were no refereed publications that occurred during the current PoP. 

1. Craig O. Savage and Bill Moran, “Waveform Selection For Maneuvering Targets 
Within An IMM Framework,” IEEE Trans AES, accepted for publication.  

2. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, ``Non-myopic sensor 
scheduling and its efficient implementation for target tracking applications,'' 
EURASIP Journal on Applied Signal Processing, to appear 2006. 

3. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, ``On the use of binary 
programming for sensor scheduling,'' IEEE Transactions on Signal Processing, 
submitted February 2006. 

2. C. Conference Proceedings 
1. C. O. Savage, R. Cramer, and H. A. Schmitt, “Geolocation with the Unscented 

Kalman Filter,” in Special Session on Cooperative Dynamic Systems, 2006 IEEE 
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International Conference on Networking, Sensing and Control, Ft. Lauderdale, FL, 
April 24, 2006.  

  
2. N. N. Shah, A. Ramirez, D. Waagen, H. A. Schmitt and A. Hero, “Comparison of 

Inter-class Divergence for Linear and Nonlinear Dimensionality Reduction, with and 
without Class Labels,” Combat Identification Systems Conference (June 19-22, 
Orlando, Florida) 2006, submitted.  

 
3. N. N. Shah, B. Corner, D. Waagen, and H. A. Schmitt, “Correlation of Inter-class 

Divergence and Classification Performance,” Combat Identification Systems 
Conference (June 19-22, Orlando, Florida) 2006, submitted. 

4. R. Cramer, S. Bellofiore, T. Stevens, H. A. Schmitt, D. Waagen, N. Patwari, A. O. 
Hero, “Localization, Detection and Tracking for Wireless Sensor Networks,” MSS, 
2006, submitted. 

5. N. Patwari and A. O. Hero III, "Indirect Radio Interferometric Localization via 
Pairwise Distance", Third Workshop on Embedded Networked Sensors (EmNets 
2006) May 30-31, 2006, Cambridge, MA, accepted. 

2. D. Consultative and Advisor Functions 
There were two consultative or advisory functions that occurred during the 

current PoP. The first relates to a Raytheon Shooter Localization demonstration using the 
MICA-2/Z sensor nodes. This work is being funded under the DARPA IXO NEST Phase 
II program. The Phase I shooter localization algorithms were developed by VU. 
Preliminary results indicated that the shooter localization algorithm has significant 
potential. The program was subsequently classified and was ultimately transitioned to 
Raytheon for demonstration and refinement under Phase II. The DARPA IXO Program 
Manager has kindly given permission for several of these algorithms to be used in our 
ISP Phase II program. The Raytheon NEST program has identified a critical need for the 
development of an accurate sensor localization algorithm that is scalable to hundreds or 
thousands of nodes. Indeed, the DARPA NEST program hopes to demonstrate a 10,000 
node network. We have identified and are evaluating several promising mathematical 
approaches to sensor localization developed by Al Hero (UM) and Bill Moran 
(UniMelb); these will be made available to the Raytheon NEST program if they are 
successful. Technical progress in these areas was discussed in the Thom Stevens and Sal 
Bellofiore support the DARPA ISP II and DARPA NEST programs, and, more generally, 
the two programs have developed a strong working relation.  

The second function relates to optical flow test facility at Eglin, Air Force Base. 
Raytheon and Georgia Tech have had preliminary discussion with Dr. T.J. Klausutis of 
Eglin AFB about the possibility of using their facility to evaluate the Georgia Tech 
CADSP imager being investigated on our ISP Phase II program. While these discussions 
are preliminary, Dr. Klausutis was interested in learning more about the capabilities and 
maturity of the CADSP Imager, so a Technical Interchange Meeting (TIM) was held at 
Eglin and supported by Raytheon (Schmitt and Waagen) and Georgia Tech (Anderson). 
Dr. Klausutis has offered to make available a GPS-equipped truck capable of collecting 
ground-truth optical flow imagery should a “packaged” CADSP imager be ready in late 
fall 2006. Georgia Tech and Raytheon are working to take advantage of that opportunity. 
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2. E. New Discoveries, Inventions or Patent Disclosures 
There were no patent disclosures filed during the current PoP. 

2. F. Honors/Awards  
There were no honors or awards received during the current PoP. 

2. G. Transitions.  
There were no technology transitions achieved during the current PoP. However, we plan 
to release the MATLAB simulation code for cooperative control of UAVs for passive 
geolocation to the US Air Force Academy. 
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2. I. Acronyms 
ADTS    Advanced Detection Technology Sensor 
ASU    Arizona State University 
ATA    Automatic Target Acquisition  
AVU     Algorithms Verification Units  
CADSP    Cooperative Analog Digital Signal Processor 
CCDR    Classification Constrained Dimensionality Reduction 
 CRB    Cramér–Rao Bound 
CROPS   Classification Reduction Optimal Policy Search 
DARPA   Defense Advanced Research Projects Agency 
DS    Danzig Selector 
DSA    Distinct Sensing Area 
dwMDS    Distributed, weighted, multi-dimensional scaling 
 FPA    Focal Plane Array 
FMAH    Fast Mathematical Algorithms and Hardware  
GEM    Geometric Entropy Maps 
Georgia Tech    Georgia Institute of Technology  
GPS    Global Positioning System 
IASG    Independently Activated Sensor Group 
ISP     Integrated Sensing and Processing 
IXO    Information Exploitation Office 
kNN    k-Nearest Neighbor  
LEAN    Laplacian Eigenmap Adaptive Neighbor 
LIP     Linear Integer Programming 
M2M     Multipoint-to-multipoint  
MC    Monte-Carlo 
MTT    Multi-target tracking 
NEST    Networked Embedded System Technology 
NDA    Non-disclosure Agreement 
NLIP    Nonlinear Integer Programming 
NLOS     NetFires Non-Line of Sight  
NUC    Non-Uniformity Compensation 
ONR     Office of Naval Research 
OSE    Out-of-sample extension 
PAM     Precision Attack Munition 
PDA    Probabilistic Data Association  
PWF    Polarization Whitening Filter 
PoP     Period of Performance 
RIM    Radio Interferometric Measurements 
RIPS    Radio Interferometric Positioning 
RISCO    Raytheon International Support Company  
RSS    Received Signal Strength 
TAA     Technical Assistance Agreement 
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TDOA    Time Difference of Arrival 
TIM     Technical Interchange Meeting 
UAV     Unmanned Aerial Vehicle 
UCIR     Uncooled infrared imaging 
UKF    Unscented Kalman filter 
UM    University of Michigan 
UniMelb    Melbourne University 
VM    Virtual Measurement 
VU    Vanderbilt University 

 


